metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shu-Min Zhao and Tian-Xing Wu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: zsmpaper@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.031 wR factor = 0.093 Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

cis-Diaqua(1,10-phenanthroline- $\kappa^2 N, N'$)-(pyridine-2,5-dicarboxylato- $\kappa^2 N, O$)manganese(II) monohydrate

In the title compound, $[Mn(C_7H_3NO_4)(C_{12}H_8N_2)(H_2O)_2]$ - H_2O , the Mn^{II} atom is surrounded by one 1,10-phenanthroline (phen) ligand, one pyridine-2,5-dicarboxylate (pydc) dianion and two water molecules in a distorted octahedral MnN₃O₃ coordination. Hydrogen bonding between neighbouring molecules leads to a two-dimensional network.

Comment

The pyridine-2,5-dicarboxylate anion (pydc) displays different coordination modes, owing to the presence of two carboxylate groups in the 2- and 5-positions and an N atom in the 1-position (Zhang *et al.*, 2005; Mohamed & Thomas, 1994; Zhao *et al.*, 2005). We have prepared and structurally characterized the title complex, (I).

Complex (I) is the second example of an Mn–pydc–phen complex, (II) (Zhang *et al.*, 2005) but the crystal structure is different from that reported previously. The Mn^{II} atom is coordinated by one 1,10-phenanthroline (phen), one pydc and two water molecules with a distorted octahedral geometry (Fig. 1). Both the pydc and phen ligands chelate in a bidentate fashion to the Mn atom; two coordinated water molecules occupy *cis*-positions of the octahedron. The two five-

© 2006 International Union of Crystallography All rights reserved The molecular structure of (I), shown with 40% probability displacement ellipsoids.

Received 3 January 2006 Accepted 20 January 2006

4176 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0506P)^2]$

+ 0.3299*P*] where $P = (F_0^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$

 $R_{\rm int} = 0.025$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -9 \rightarrow 8$

 $k = -13 \rightarrow 13$

 $l = -16 \rightarrow 16$

3652 reflections with $I > 2\sigma(I)$

Figure 2

View of the $O-H\cdots O$ hydrogen-bonded (dashed lines) two-dimensional network. Phen rings not involved in hydrogen bonding have been omitted.

membered rings display an envelope conformation, with the Mn^{II} atom in the flap position and deviating from the mean planes formed by the other four atoms by 0.0752 (6) and 0.0296 (6) Å. The Mn-N bond lengths are almost equal to those of the aforementioned Mn^{II} complex, while the Mn-O bond lengths are slightly shorter (Zhang *et al.*, 2005; Mohamed & Thomas, 1994). The pyridine ring plane of pydc and the phen plane are nearly perpendicular to each other, the dihedral angle being 71.76 (5)°. In the analogous Mn^{II} complex, (II), which has the same ligands as in (I), pydc acts as a chelating-bridging ligand (Zhang *et al.*, 2005). The two coordination modes are depicted in the scheme below.

H and O atoms of water molecules and uncoordinated O atoms of pydc are all involved in intermolecular $O-H\cdots O$ hydrogen bonding, resulting in a two-dimensional network (Table 2 and Fig. 2). The crystal structure appears to be tightly consolidated by extensive hydrogen bonds.

Experimental

A solution of $MnCl_2 \cdot H_2O$ (0.0396 g, 0.2 mmol) and pyridine-2,5dicarboxylate (0.0334 g, 0.2 mmol) dissolved in water (20 ml) was added to an ethanol solution (5 ml) of 1,10-phenanthroline (0.0396 g, 0.2 mmol). The pale-yellow solution was left to stand to allow the solvent to evaporate. Yellow needle-shaped crystals of (I) were obtained after three weeks.

Crystal data

$Mn(C_7H_3NO_4)(C_{12}H_8N_2)$ -	Z = 2
$(H_2O)_2] \cdot H_2O$	$D_x = 1.590 \text{ Mg m}^{-3}$
$A_r = 454.30$	Mo $K\alpha$ radiation
Triclinic, $P\overline{1}$	Cell parameters from 3497
= 7.4549 (3) Å	reflections
P = 10.2413 (4) Å	$\theta = 2.6-27.4^{\circ}$
= 12.4397 (9) Å	$\mu = 0.75 \text{ mm}^{-1}$
$u = 90.141 \ (4)^{\circ}$	T = 295 (1) K
$B = 92.127 \ (3)^{\circ}$	Needle, yellow
$\nu = 90.4630 \ (10)^{\circ}$	$0.28 \times 0.13 \times 0.10 \text{ mm}$
$V = 949.06 (9) \text{ Å}^3$	

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.786, T_{\max} = 0.928$ 8776 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.093$ S = 1.064176 reflections 271 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Mn-O1	2.1242 (13)	Mn-N2	2.2716 (16)
Mn-O5	2.1420 (14)	Mn-N1	2.2727 (15)
Mn-O6	2.1636 (13)	Mn-N3	2.3167 (14)
O1-Mn-O5	164.75 (5)	O6-Mn-N1	88.45 (5)
O1-Mn-O6	86.35 (5)	N2-Mn-N1	73.08 (5)
O5-Mn-O6	87.36 (5)	O1-Mn-N3	74.36 (5)
O1-Mn-N2	95.97 (6)	O5-Mn-N3	93.52 (5)
O5-Mn-N2	94.40 (6)	O6-Mn-N3	102.56 (5)
O6-Mn-N2	161.48 (5)	N2-Mn-N3	95.74 (5)
O1-Mn-N1	101.58 (5)	N1-Mn-N3	167.85 (5)
O5-Mn-N1	92.12 (6)		

 Table 2

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
07-H71O3 ⁱ	0.84	1.90	2.721 (2)	169
$O7 - H72 \cdot \cdot \cdot O4^{ii}$	0.92	1.94	2.760 (2)	147
O6−H61···O4 ⁱⁱⁱ	0.88	1.82	2.6953 (19)	176
O6−H62···O7	0.83	1.88	2.692 (2)	168
O5−H52···O7	0.84	2.07	2.861 (2)	155
$O5-H51\cdots O2^{iv}$	0.88	1.75	2.6302 (19)	178

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x, y - 1, z; (iii) -x, -y + 1, -z; (iv) x + 1, y, z.

The H atoms of the phen and pyridine-2,5-dicarboxylate were placed in calculated positions, with C-H = 0.93 Å, and were included in the final cycles of refinement in riding mode, with $U_{\rm iso}(H) = 1.2U_{\rm eq}(C)$. The H atoms of the water molecules were located in difference Fourier maps and treated as riding in their as-found relative positions, with $U_{\rm iso}(H) = 1.2U_{\rm eq}(O)$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/

metal-organic papers

MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Mohamed, A. S. G. & Thomas, C. W. M. (1994). *Struct. Chem.* **5**, 165–170. Rigaku (1998). *PROCESS-AUTO*. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Zhang, X.-F., Huang, D.-G., Chen, C.-N., Liu, Q,-T., Liao, D.-Z. & Li, L.-C. (2005). Inorg. Chem. Commun. 8, 22-26.

Zhao, S.-M., Wu, T.-X. & Yu. Q.-S. (2005). Acta Cryst. E61, m2505-m2506.